

Welcome to Manalyze’s documentation!

Manalyze performs static analysis on PE files, in order to detect signs of malicious behavior. It is a versatile tool with a robust parser and a set of built-in tests, but can also be extended easily. You can use Manalyze to:

	Detect packed executables

	Apply ClamAV and Yara signatures

	Look for suspicious import combinations (i.e. CreateRemoteThread + WriteProcessMemory)

	Analyze and extract resources

	Identify cryptographic algorithms used

	Submit hashes to VirusTotal

	Verify authenticode signatures

	…and more.

Here is a sample report generated by the tool for 643654975b63a9bb6f597502e5cd8f49, a sample taken from the Siesta [https://www.fireeye.com/blog/threat-research/2014/03/a-detailed-examination-of-the-siesta-campaign.html] campaign:

Summary:

Architecture: IMAGE_FILE_MACHINE_I386
Subsystem: IMAGE_SUBSYSTEM_WINDOWS_GUI
Compilation Date: 2014-Jan-14 04:38:30
Detected languages: Chinese - PRC

[MALICIOUS] Matching ClamAV signature(s):
 Win.Backdoor.Sloth

Matching compiler(s):
 MASM/TASM - sig4 (h)
 Microsoft Visual C++
 Microsoft Visual C++ v6.0

[SUSPICIOUS] PEiD Signature:
 Armadillo v1.71

Cryptographic algorithms detected in the binary:
 Uses constants related to DES

The PE contains common functions which appear in legitimate applications.
 [!] The program may be hiding some of its imports:
 GetProcAddress
 LoadLibraryA
 Possibly launches other programs:
 CreateProcessA
 ShellExecuteA
 Can create temporary files:
 CreateFileA
 GetTempPathA

[MALICIOUS] The PE is possibly a dropper.
 Resource 108 detected as a PDF document.
 Resource 109 detected as a PE Executable.
 Resources amount for 93.026% of the executable.

[MALICIOUS] VirusTotal score: 38/56 (Scanned on 2015-10-26 15:07:59)
 MicroWorld-eScan: Gen:Variant.Zusy.23178
 CAT-QuickHeal: Trojan.Comisproc.r4
 [...]

This sample is a dropper of (allegedly) Chinese origin which displays a PDF file upon launch and encrypts its strings with the DES algorithm: all of which could have been guessed from reading the analysis report.

In the first part of this documentation, you will learn how to obtain and use the tool. The second part focuses on Manalyze’s plugin system, should you wish to extend its capabilities.

Contents:

	User documentation
	Obtaining the tool
	Binary distributions

	Building Manalyze

	Offline builds

	Troubleshooting

	Initial configuration
	VirusTotal plugin

	ClamAV plugin

	Usage
	Selecting target programs

	Dumping a PE’s structure

	Using the plugins

	Developer documentation
	Before contributing
	About the GPLv3 license

	Coding style

	Getting Help

	How the code is organized
	The root folder

	The bin folder

	The external folder

	Source folders

	Other folders

	Writing plugins
	Internal and external plugins

	A sample plugin

	Plugin results

	PE objects

	Section objects

	Resource objects

	Using the configuration file

	Anything missing?

	Writing Yara rules
	Introduction

	Supported commands

	Sample rule

	Reusing the PE parser
	Embedding the code

	Reusing binaries

	Interfacing with Manalyze
	Native Manalyze integration

	Manalyzer.org API
	Python API

	Under the hood

	JSON structure
	Dump of the PE

	Plugins

	Additional JSON samples:

Indices and tables

	Index

	Module Index

	Search Page

User documentation

This section is intended for malware researchers who wish to use Manalyze to assist them in their work. It will cover obtaining the tool (either by downloading binaries or by compiling it yourself), configuration and basic usage.

If you wish to contribute to the project, check out the Developer Documentation!

	Obtaining the tool
	Binary distributions

	Building Manalyze
	Linux and BSD

	Windows

	What about MacOS?

	Offline builds

	Troubleshooting
	1. Boost is obsolete

	2. CMake does not find OpenSSL

	3. Incompatibilities between OpenSSL 1.1 and Boost

	Initial configuration
	VirusTotal plugin

	ClamAV plugin
	Additional considerations

	Usage
	Selecting target programs

	Dumping a PE’s structure

	Using the plugins
	Installing plugins

Obtaining the tool

Binary distributions

Windows users can download the latest binaries here [https://manalyzer.org/static/manalyze.rar]. Unzip the archive somewhere on your filesystem and you’re ready to go! All the binaries are signed with a certificate presenting the following fingerprint : 26fc24c12b2d84f77615cf6299e3e4ca4f3878fc.

Deb packages will hopefully be offered at some point but right now, using Manalyze on other operating systems requires compiling it yourself.

Building Manalyze

Spending hours trying to build someone else’s code is one of the most horrendous experiences in software development. A lot of work was put into Manalyze’s build system to ensure that anyone would be able to compile it with a minimum of friction. If the following instructions don’t work for you, be sure to get in touch with the program’s maintainer so the situation (or this documentation) can be improved.

In the general case, you can build this tool in four simple steps:

	Obtaining the tools and libraries Manalyze depends on:

	CMake [https://cmake.org/download/]

	A recent version of Boost [http://www.boost.org/users/download/].

	Checkout the program’s source code from GitHub.

	Using CMake to generate system-dependent build files. The CMake script will also check out additional libraries from GitHub.

	Compile Manalyze. All the binaries are placed in the bin/ folder.

Here are more specific steps for a few major operating systems:

Linux and BSD

How you take care of step 1 may vary depending on your package manager. On Debian Jessie, use the following command as root:

apt-get install libboost-regex-dev libboost-program-options-dev libboost-system-dev libboost-filesystem-dev libssl-dev build-essential cmake git

On FreeBSD 10.2, use this one instead (also as root):

pkg install boost-libs-1.55.0_8 libressl cmake git

Next, get Manalyze’s source code and try building it:

git clone https://github.com/JusticeRage/Manalyze.git && cd Manalyze
cmake .
make
cd bin && ./manalyze --version

If everything went well, the tool’s version should be displayed. Otherwise, jump to the Troubleshooting section below or look for error messages during the build process and get in touch with the maintainer to request help!

Tip

You can enable debug builds with the following command: cmake . -DDebug=ON

 Initial configuration

Initial configuration

You have just downloaded Manalyze, and while it runs on your system, there are just a few more steps to follow before you can use it fully. Some of the plugins bundled with the program need to be configured manually. In most cases, all you have to do is look at bin/manalyze.conf and see if there are any values which need editing.

VirusTotal plugin

When you use this plugin for the first time, you’re likely to encounter the following error:

[*] Warning: The VirusTotal API key was not found in the configuration file.

In order to submit hashes to VirusTotal, it is necessary to register [https://www.virustotal.com/en/] on their website and retrieve an API key. If you really can’t be bothered, many of these can be found on GitHub [https://github.com/search?q=%22https%3A%2F%2Fwww.virustotal.com%2Fvtapi%2Fv2%22&type=Code&utf8=%E2%9C%93].

VirusTotal offers two types of API access: public and private. Right now, Manalyze doesn’t support any of the “private” features, but if you’re lucky enough to have a such a key, at least you won’t be bound by the request rate limit. After you have obtained an API key, edit bin/manalyze.conf and add the following line:

virustotal.api_key = [your key here]

After this, the plugin will be able to retrieve hashes from VirusTotal.

ClamAV plugin

Manalyze can apply ClamAV signatures to detect known malware. Those signature are however not distributed with the application because of their size, and the fact that they are constantly updated. This is the reason why running the ClamAV plugin for the first time is likely to print the following error:

[!] Error: Could not load yara rules (ERROR_COULD_NOT_OPEN_FILE).
[!] Error: ClamAV rules haven't been generated yet!
[!] Error: Please run yara_rules/update_clamav_signatures.py to create them, and refer to the documentation for additional information.

You’ve been promised “additional information”: here it is! ClamAV signatures have to be downloaded from the official website [http://www.clamav.net/]. But Manalyze can’t read ClamAV signatures out of the box, they first need to be converted to Yara rules. The whole process was a little cumbersome, so a Python script was written to automate the process. Simply run:

python yara_rules/update_clamav_signatures.py

…and the rules will be added to Manalyze. Run the script anytime you want to update the signatures!

Additional considerations

ClamAV signatures are divided into two files, the “main” and the “daily” signatures. The former isn’t updated very often, as opposed to the latter. For this reason, the python script will not download the “main” signatures if they have already been retreived: only the daily rules will be regenerated. To perform a full upgrade, call the script with the following parameter:

python yara_rules/update_clamav_signatures.py --main

 Usage

Usage

If you have managed to obtain and configure Manalyze but want to know more about how to use it, you’re in the right place! First, let’s have a look at the program’s help screen:

Usage:
 -h [--help] Displays this message.
 -v [--version] Prints the program's version.
 --pe arg The PE to analyze. Also accepted as a positional
 argument. Multiple files may be specified.
 -r [--recursive] Scan all files in a directory (subdirectories will be
 ignored).
 -o [--output] arg The output format. May be 'raw' (default) or 'json'.
 -d [--dump] arg Dump PE information. Available choices are any
 combination of: all, summary, dos (dos header), pe (pe
 header), opt (pe optional header), sections, imports,
 exports, resources, version, debug, tls, config, delay
 --hashes Calculate various hashes of the file (may slow down the
 analysis!)
 -x [--extract] arg Extract the PE resources to the target directory.
 -p [--plugins] arg Analyze the binary with additional plugins. (may slow
 down the analysis!)

Available plugins:
 - clamav: Scans the binary with ClamAV virus definitions.
 - compilers: Tries to determine which compiler generated the binary.
 - peid: Returns the PEiD signature of the binary.
 - strings: Looks for suspicious strings (anti-VM, process names...).
 - findcrypt: Detects embedded cryptographic constants.
 - packer: Tries to structurally detect packer presence.
 - imports: Looks for suspicious imports.
 - resources: Analyzes the program's resources.
 - mitigation: Displays the enabled exploit mitigation techniques (DEP, ASLR, etc.).
 - authenticode: Checks if the digital signature of the PE is valid.
 - virustotal: Checks existing AV results on VirusTotal.
 - all: Run all the available plugins.

Examples:
 manalyze.exe program.exe
 manalyze.exe -dresources -dexports -x out/ program.exe
 manalyze.exe --dump=imports,sections --hashes program.exe
 manalyze.exe -r malwares/ --plugins=peid,clamav --dump all

Most options are self-explanatory, but let’s go over them anyway.

Selecting target programs

In order to choose which program(s) should be analyzed, you can use the --pe option. Targets are also accepted as positional arguments; this means that listing them on the command line without prefixing them with any particular flag will work. You can specify as many files as you want: they will be studied sequentially. The -r (or --recursive) option allows you to scan whole directories - even if they contain gigabytes of files (have fun reading the reports though). However, subdirectories will be ignored. For instance, if you have the following folder structure:

dir/
 |- malware1.exe
 |- lib1.dll
 `- dropped/
 |- malware2.exe
 `- lib2.dll

…then running a recursive analysis on this folder will not process malware2.exe and lib2.dll. Use ./manalyze -r dir dir/dropped to analyze all of them.

Dumping a PE’s structure

Since Manalyze implements a PE parser, you can use it to look closely at the structure of target files. the --dump (or -d) option allows you to control what part of the PE you want to print. For instance, to look at a PE’s sections, use ./manalyze [target file] -d sections. You can of choose to display several categories at once. In terms of syntax, ./manalyze [target file] -d sections -d imports and ./manalyze [target file] -d sections,imports are equivalent.

Here is the list of all supported categories:

	summary: Contains general information on the input file. It gathers all the metadata which may be relevant to the interests of a malware researcher: possible debug paths present in the binary, a list of detected resource and/or manifest languages, compilation date, etc.

	dos, pe, opt: The DOS, PE, and PE optional headers respectively.

	sections; The sections of the PE. Note that if the --hashes option has been set, the returned information will also contain the hashes of each section.

	imports and exports: The imported functions and exported functions of the input file.

	resources: Displays information about the resources included in target PE files (size, entropy, filetype if possible, etc.). Cryptographic hashes will also be displayed if the --hashes option was activated. You may also be interested in the companion --extract (or -x) option, which allows you to write the resources inside the folder of your choice. Note that it is of course possible to extract resources without printing information about them, and vice-versa.

	version, debug and tls: These categories respectively show the data contained in the RT_VERSION resource, some metadata about embedded debug information and possible TLS callbacks.

	all: Dump everything.

If the requested data is not present (for instance, if no TLS callbacks are present in the input file), Manalyze simply won’t return anything for the requested category. If no category is requested, the program will display the summary information by default. Finally, in addition to the uses described above, the --hashes option will also print the file hashes (MD5, SHA1, SHA256, SHA3, imphash and ssdeep) if given.

Using the plugins

While reading raw PE data may be interesting, Malalyze was designed so that tools could process this information automatically and generate meaningful reports based on them. The basic workflow of the project goes like this:

	The PE parser gathers as much data as possible on a given input file.

	The obtained data is provided to plugins so they can study, mine and/or correlate it to give an opinion about whether a program is malicious or not, or simply print out information which would be relevant to someone analyzing the file.

The following plugins are available:

	clamav: Applies ClamAV signatures to detect known malware. In order to use this plugin, make sure that you have downloaded the signatures!

	compilers: Applies PEiD signatures to try to detect the compiler which generated the input file.

	strings: Looks for suspicious strings and patterns inside the binary (i.e. references to cmd.exe, anti-VM opcodes, etc.).

	findcrypt: Detects cryptographic capabilities in a binary by looking at imports and searching for constants used in well-known algorithms.

	packer: Applies PEiD signatures to try to detect if the file was packed. Warnings will also be raised based on unusual section names and a low number of imports (which can be set in the configuration file to better suit your needs).

	imports: Guesses a PE file’s capabilities through its imported functions.

	resources: Analyzes a program’s resources to see if it contains encrypted files and/or suspicious filetypes. This plugin also contains a couple of heuristic methods to determine if a file might be a dropper [https://en.wikipedia.org/wiki/Dropper_%28malware%29].

	mitigation: Checks which exploit mitigation techniques (/GS, SafeSEH, ASLR and DEP) are enabled in the binary.

	authenticode: Checks the validity of a PE file’s signature. At the moment, this plugin is only available on Windows platforms, since it relies heavily on that operating system’s API.

	virustotal: Submits the hash of the input file to VirusTotal to see if any antivirus engine detects it as malware.

	all: Run all plugins.

Installing plugins

I’m not aware of any third-party plugins at the moment, but should anyone develop one, all you have to do to use it is download the .dll or .so file (depending on your OS) and place it next to Manalyze’s binary. It will be detected automatically.

 Developer documentation

Developer documentation

Welcome to the developer documentation! This section serves as a reference for people willing to contribute to the project.
First of all, thank you for wanting to make Manalyze better! During the course of this chapter, we will discuss considerations which should be taken into account before submitting code. Then we’ll look at how the code is organized and formatted in the project. Finally, we’ll look at the two ways this project can be extended: by writing a plugin to add analysis capabilities and by improving the core of the tool.

In this chapter, it is assumed that you have obtained a copy of the program’s source code and know how to build it. If it is not the case, please refer to the obtaining the tool page.

	Before contributing
	About the GPLv3 license

	Coding style

	Getting Help

	How the code is organized
	The root folder

	The bin folder

	The external folder

	Source folders

	Other folders

	Writing plugins
	Internal and external plugins

	A sample plugin
	Internal plugin skeleton:

	External plugin skeleton:

	Plugin results
	Threat level

	Summary

	Information

	PE objects
	DOS Header

	PE Header

	Optional Header

	Sections

	Imports

	Exports

	Resources

	Debug Information

	Thread Local Storage

	Load Configuration

	Delay Load Table

	RICH Header

	Miscellaneous

	Section objects
	Finding a section

	Accessing the raw bytes

	Resource objects
	Accessing the underlying resource

	Extracting resources

	Using the configuration file

	Anything missing?

	Writing Yara rules
	Introduction

	Supported commands

	Sample rule

	Reusing the PE parser
	Embedding the code

	Reusing binaries
	On Linux

	On Windows

 Before contributing

Before contributing

If you’re reading this, you’re probably eager to start writing code, but please bear with me for a few more minutes: if you don’t take into account the instructions contained on this page, your contributions to the project may be rejected regardless of their quality!

About the GPLv3 license

Manalyze is distributed under the terms of the GPLv3 license [https://www.gnu.org/licenses/gpl-3.0.txt]. If you wish to contribute to the project’s, you must agree to its terms and use the same license for code you submit. All source files should start with the following header:

/*
 This file is part of Manalyze.

 Manalyze is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 Manalyze is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with Manalyze. If not, see <http://www.gnu.org/licenses/>.
*/

If the code you are submitting depends on third-party libraries, make sure that their license is compatible - if it’s not, we will not be able to accept your contribution. Refer to the GNU website [https://www.gnu.org/licenses/license-list.en.html] to check whether a particular license can be used alongside the GPLv3.

Note

If you would like to use any part of Manalyze in a commercial product but the GPL license isn’t compatible with it, get in touch with the maintainer: dual-licensing options are available.

 How the code is organized

How the code is organized

This project currently has over 8000 lines of code and it may be hard at first to find what you’re looking for. This page contains an overview of how the code is organized and will help you figure out where the implementations you need to find are located.

The root folder

Let’s start at the root folder of the project. It only contains one important file: CMakeLists.txt, which is CMake’s configuration file. If you add new sources in your contribution (as opposed to only modifying existing ones), you will need to edit its contents in order to let the build system know about them. Apart from that, Manalyze’s README and its license can be found here.

The bin folder

This is where generated binaries are put - but it contains a few files even if you haven’t compiled the project yet:

	manalyze.conf is a configuration file for the program, pre-filled with default values.

	The yara_rules folder contains Yara [https://github.com/plusvic/yara] rules used by the different plugins. You will also find a Python script which generates ClamAV rules by downloading the latest signatures from the official website and converting them to the right format.

The external folder

This directory should be mostly empty before you run CMake. It contains the third-party libraries that Manalyze is built against. Those libraries are checked out from GitHub during the compilation process. At the moment, there are two of them:

	Hash Library [https://github.com/JusticeRage/hash-library], a set of hashing algorithm implementations authored by Stephan Brumme [http://create.stephan-brumme.com/hash-library/].

	Yara [https://github.com/JusticeRage/yara], the well known pattern matching tool from plusvic [https://github.com/plusvic/yara.git]. A few modifications have been made to this project, which justifies maintaining our own fork:

	The code has been stripped down to a library (the command-line tool has been removed).

	This version is built with CMake instead of the original Makefile.

	A C++ wrapper was added to facilitate Yara’s manipulation and integration with Manalyze.

	All modules have been disabled, and a new one was written so Yara can receive information from Manalyze. In particular, their PE module was replaced since Manalyze already contains a powerful PE parser.

Source folders

The code of the project is spread out in the following folders:

	src: contains Manalyze’s “engine”. The entry point of the application is located there (in main.cpp), as well as all the functions tasked with validating the arguments, loading the configuration and the plugins, and of course launching the analysis for each target file.

	manacommons: a small library which contains functionnality shared between the core and the plugins, for instance what a plugin result or an analysis report should look like, or how to print text in color.

	manape: all the code related to PE parsing is located in this library.

	plugins: as you might expect, this folder contains Manalyze’s plugins. Some of them are fairly simple and fit in a single .cpp file; others are bigger and are subsequently put in a separate folder.

	include: in this directory, you will find the headers of all the source files contained in the folders described above. If you want to understand the program’s API quickly, it is recommended that you have a look at the files located here: function declarations are thoroughly commented and will give you a good idea of each class’ capabilities.

Other folders

	Inside docs, you will find the reStructured Text which is used to generate this documentation!

	The resources folder contains some useful documentation, like the PE format specification.

 Writing plugins

Writing plugins

In this section, we’ll learn how to write plugins for this project.

Internal and external plugins

There are two ways plugins can be integrated in Manalyze. You can either:

	Statically bundle them within the executable of the application (internal plugins).

	Build them as a separate library which will be loaded dynamically (external plugins).

Which one should you choose? Here are some guidelines to help you decide:

	If you intend to distribute your plugin, you should write an external plugin. It makes more sense to share a .so or .dll file than a whole new Manalyze binary with added code.

	If your plugin is relatively small and isn’t meant to be shared, it is okay to write an internal plugin. Conversely, complex plugins which pull third-party libraries should be compiled in their own module.

In any case, aside from small discrepancies in the way each type of plugin is built, the code you will write will be mostly identical.

A sample plugin

Let’s dive right into it and write an Hello World plugin! Let’s create plugins/plugin_helloworld.cpp.

Internal plugin skeleton:

#include "plugin_framework/plugin_interface.h"
#include "plugin_framework/auto_register.h"

namespace plugin
{

class HelloWorldPlugin : public IPlugin
{

};

AutoRegister<HelloWorldPlugin> auto_register_helloworld;

} //!namespace plugin

Modifications to CMakeLists.txt: add a reference to this new source file with the other internal plugins, on the third line of the following snippet:

add_executable(manalyze src/main.cpp src/config_parser.cpp src/output_formatter.cpp src/dump.cpp
 src/plugin_framework/dynamic_library.cpp src/plugin_framework/plugin_manager.cpp # Plugin system
 plugins/plugins_yara.cpp plugins/plugin_packer_detection.cpp plugins/plugin_imports.cpp plugins/plugin_resources.cpp plugins/plugin_helloworld.cpp) # Bundled plugins

External plugin skeleton:

#include "plugin_framework/plugin_interface.h"

namespace plugin
{

class HelloWorldPlugin : public IPlugin
{

};

// --

extern "C"
{
 PLUGIN_API IPlugin* create() { return new HelloWorldPlugin(); }
 PLUGIN_API void destroy(IPlugin* p) { delete p; }
};

} //!namespace plugin

Modifications to CMakeLists.txt: declare a new library, for instance just under the VirusTotal plugin:

HelloWorld plugin
add_library(plugin_helloworld SHARED plugins/plugin_helloworld.cpp)
target_link_libraries(plugin_helloworld manape hash-library manacommons)

There are some parts missing, but it’s okay for now. Points of interest are the mandatory included file(s), and the definition of a new class inheriting from plugin::IPlugin which defines the interface all plugins must adhere to. Internal plugins contain some additional magic to let the core know about them at startup. If you’re building an external plugin, omit the AutoRegister instance: Manalyze will find it by scanning its folder for library files. Instead, you have to define the create and destroy functions so the core can load and unload your plugin.

If you try to build the plugin right now, you’ll see that the compiler is very annoyed about some missing functions. Let’s go back to our source file and finish our plugin’s implementation:

class HelloWorldPlugin : public IPlugin
{
 int get_api_version() const override { return 1; }

 pString get_id() const override {
 return boost::make_shared<std::string>("helloworld");
 }

 pString get_description() const override {
 return boost::make_shared<std::string>("A sample plugin.");
 }

 pResult analyze(const mana::PE& pe) override
 {
 pResult res = create_result();
 res->add_information("Hello world from the plugin!");
 return res;
 }
};

These functions serve the following purpose:

	get_api_version: the version of the API used by this plugin, in case it evolves and breaks retro-compatibility in the future. Just return 1 for now.

	get_id: the name of the plugin. This is how it will be referred to in the program’s help and on the command-line; make sure to pick something unique!

	get_description: a short explanation of what the plugin does. It is only printed when the user calls Manalyze with the --help option.

	analyze: performs the analysis of the program. We’ll get back to this one very soon, for now, it just creates a result object containing a message.

Build the project again, and the plugin will automatically appear in the program’s help:

$ bin/manalyze --help
Usage:
 -h [--help] Displays this message.
 [...]

Available plugins:
 [...]
 - helloworld: A sample plugin.
 - all: Run all the available plugins.

$ bin/manalyze -p helloworld malware.mal
* Manalyze 1.0 *

malware.mal

Summary:

Architecture: IMAGE_FILE_MACHINE_I386
Subsystem: IMAGE_SUBSYSTEM_WINDOWS_GUI
Compilation Date: 2015-Apr-23 16:45:58
Detected languages: English - United States

 Hello world from the plugin!

Great, our code has been called! Now let’s try doing something useful.

Plugin results

After performing whatever work they do, plugins send back analysis data to the program’s core through plugin::Result objects. These objects are composed of three things:

	A threat level, which indicates how dangerous the target file is according to the plugin.
Keep in mind that plugins are only expected to give an opinion limited to their scope. In other words, it’s okay for some plugins to mark known malware as safe: for example, the authenticode plugin would return this threat level for a malware with a valid digital signature. It’s the user’s job to take all the plugin results into account and determine whether the file is malicious or not.

	A summary describing the plugin’s general findings on the PE, or introducing the information which follows.

	Pieces of textual information providing more detailed insight on the target file.

Tip

For instance, the imports plugin may return a result containing the following data:

Threat Level: MALICIOUS
Summary: The PE contains functions mostly used by malwares.
Information: Uses functions commonly found in keyloggers
 Has Internet access capabilities
 Uses Microsoft's cryptographic API

 Writing Yara rules

Writing Yara rules

This section is dedicated to the intricacies of writing Yara rules which can be used by Manalyze.

Introduction

Because Manalyze already includes an (hopefully) efficient PE parser, it was deemed unnecessary to rely on the one that is provided with Yara. The Yara engine provided with Manalyze was essentially stripped down to the library code and contains none of the plugins provided with the original distribution. Custom C++ wrappers were also added to the project. All the modifications to the code may be found on GitHub [https://github.com/JusticeRage/yara].

For this reason, Yara rules relying on the original PE module will not work with Manalyze ; they need to be modified so they rely on the one provided to Yara by the tool.

Note

The functionnalities provided by this module are added on a need basis. If you need additional data exposed, please create an issue [https://github.com/JusticeRage/Manalyze/issues] on GitHub!

 Reusing the PE parser

Reusing the PE parser

Embedding the code

This section will explain how you can take the PE parser (ManaPE) out of Manalyze and re-use it in another project.

Let’s start by writing some sample code that would read a PE file using Manalyze’s parser:

#include <iostream>
#include "manape/pe.h"

int main(int argc, char** argv)
{
 mana::PE pe("file.exe");
 if (pe.is_valid()) { // Always check this.
 std::cout << "File parsed successfully: " << *pe.get_path() << std::endl;
 }
 else
 {
 std::cout << "The file is invalid!" << std::endl;
 return 1;
 }

 // Do stuff with the PE
 auto sections = pe.get_sections();
 for (auto it = sections->begin() ; it != sections->end() ; ++it) {
 std::cout << *(*it)->get_name() << std::endl;
 }
 // ...

 return 0;
}

For this to compile, you’ll have to grab ManaPE’s code and put it inside your project. you need both the manape and include/manape folders.

~/code/project$ mkdir include
~/code/project$ cp -r [...]/Manalyze/manape/ . && cp -r [...]/Manalyze/include/manape/ include/

You don’t have to follow the same folder structure, it’s only given as an example. Then, assuming you copied the previous code in main.cpp, the only thing left to do is to compile everything:

~/code/project$ g++ main.cpp manape/*.cpp -lboost_system -lboost_regex -Iinclude -std=c++11
~/code/project$./a.out
File parsed successfully: file.exe
.text
.rdata
.data
.rsrc

Obviously, you’ll want to write a Makefile or use CMake, but this should be enough to get you started. If you need detailed information on available methods that you can use from here, please see this section on PE objects.

Reusing binaries

On Linux

Depending on your use-case, you may alternatively re-use the shared libraries which are distributed and/or generated with Manalyze and its build system.

In that case, you still have to include the header files in your project as described above (except you only need the [...]/Manalyze/include/manape/ directory). You also need to copy the shared objects:

~/code/project$ mkdir include lib
~/code/project$ cp -r [...]/Manalyze/include/manape/ include/
~/code/project$ cp [...]/Manalyze/bin/*.so lib/

Subsequently, add -Llib and -lmanape -lmanacommons to your compilation flags to indicate that the compiler should link against those libraries.

On Windows

Linking against DLLs requires a little more work on Windows. First, copy Manalyze’s header files in your project directory as described above. Also put Manalyze’s DLLs somewhere in the PATH of your project (likely the folder where your executable will be generated). You’ll need manape.dll, manacommons.dll, hash-library.dll and yara.dll.

Sadly, Visual Studio is only capable of linking against .lib files, even if the code will in fine be found in a DLL. Those files are generated when Manalyze is built but are not distributed with the program - this means that you have to checkout Manalyze’s source code from GitHub and build it manually. Hopefully, this should be as simple as this:

$ git clone https://github.com/JusticeRage/Manalyze.git
$ cd Manalyze
$ cmake .

…Then use Visual Studio to build everything. Following that, you will find a few .lib files in [...]\Manalyze\Debug\ or [...]\Manalyze\Release\ (use whichever matches your build profile). Copy *.lib to a lib folder in your project directory and configure VS so that they will be taken into account. This involves:

	Adding the lib folder to Library Directories under VC++ Directories.

	Specifying manape.lib and manacommons.lib in Linker > Input > Additional Dependencies

From there, you should be able to write code relying on the PE parser!

 Interfacing with Manalyze

Interfacing with Manalyze

Native Manalyze integration

If you’re working on a tool that could benefit from integrating with Manalyze, there are a few ways you can obtain results from the program.
The most straightforward one is to parse the output of Manalyze directly:

manalyze [sample] --dump=... --plugins=... --output=json

Manalyzer.org API

If you are not willing or able to use Manalyze on your local machine, the web portal can
provide the same results. The website’s API can currently be used with no restrictions or rate-limiting.

Python API

Jobs can be sent to Manalyzer.org using a simple Python library [https://gist.github.com/JusticeRage/f6fd2d003c13d85c4f864fd7f327382d]. The creation of a pip package is currently under development. Assuming you saved the library under manalyzer.py, the following code can be used to analyze PE files:

import manalyzer

report = manalyzer.submit_sample("C:\\path\\to\\file.exe")
print(report)

Existing reports can be queries just as easily:

import manalyzer

report = manalyzer.get_report("3c0d740347b0362331c882c2dee96dbf")
print(report)

For a reference of what JSON reports may contain, please refer to the JSON structure section.

Under the hood

When a sample is submitted through the web portal, it goes into a job queue and waits until workers are available
to be processed. API submissions follow the same logic, where a task is first created, and then polled until results
are ready. File uploads take place through POST requests to https://manalyzer.org/upload. The following Python
snippet can be used if needed:

import requests

f = {'file': open(path, "rb")}
r = requests.post("https://manalyzer.org/upload", files=f)

These results are returned as JSON objects with the following structure:

{
 "status": "...",
 "data": { ... }
}

The status field represents the status of the task. It can be either queued (Manalyzer.org is waiting
for a worker to become available), started (the analysis is ongoing), finished (results are available)
or failed (the job could not complete). Please note that this status only provides information about the task
itself. A finished status does not imply that the submitted file was parsed successfully, only that it was
analyzed. Possible errors include problems during the file transfer, unavailable service, etc. In that case, you might
get a result which looks like this:

{
 "status": "failed",
 "data": {
 "error_message": "An error occurred during the file transfer."
 }
}

When the analysis is queued, started or finished, it receives a unique identifier which can be used to query its
status from https://manalyzer.org/task/<task id>. The API will provide information about the job:

{
 'status': 'started',
 'data': {
 'task_id': 'XXX',
 'task_result': None
 }
}

Finally, when the task is complete (i.e. the status becomes finished), you can inspect the contents of the
task_result field to get information about the results of the analysis:

{
 'status': 'finished',
 'data': {
 'task_id': 'XXX',
 'task_result': {
 'manalyze_status': 'success'
 }
 }
}

The manalyze_status field indicates whether the submitted file could be analyzed successfully or not (which,
again, is not the same thing as the job being finished). This status can be either success or failed.
In the latter case, task_result may also contain an error_message field that provides more information
about what happened:

{
 'status': 'finished',
 'data':
 {
 'task_id': 'YYY',
 'task_result': {
 'error_message': '[!] Error: DOS Header is invalid (wrong magic).\n ...',
 'manalyze_status': 'failed'
 }
 }
}

If everything went well, the JSON report for the uploaded file will be available at
https://manalyzer.org/json/<task_id>

JSON structure

In both cases, you’ll obtain a JSON document which represents the report produced by Manalyze. Their high-level structure is as follows:

user@machine:~/samples$ manalyze -ojson file1 /tmp/file2
{
 "/home/user/samples/file1": {
 // Report for file1
 }
 "/tmp/file2": {
 // Report for file2
 }
}

At the root of the document, you’ll find an entry for each file analyzed. If the
analysis could not complete successfully, no object will be added to the document root.
In the rest of the documentation, only reports for a single file will be used, as
they all have the exact same structure.

Dump of the PE

The reports can be viewed as the sum of two parts. First, all the information pertaining
to the file format that Manalyze would print through the --dump option. Here is
what that part of the document may look like:

{
 "ab35c68e263bb4dca6c11e16cd7fb9d8": {
 "Summary": {
 "Compilation Date": "2017-Nov-16 22:05:22",
 "Detected languages": [
 "English - United States"
],
 "CompanyName": "Sysinternals - www.sysinternals.com"
 // ...
 },
 "DOS Header": {
 "e_magic": "MZ",
 "e_cblp": 144
 // ...
 },
 "Sections": {
 ".text": {
 "MD5": "c151016c0929a571e7a3882e3c292524",
 "NumberOfRelocations": 0,
 "Characteristics": [
 "IMAGE_SCN_CNT_CODE",
 "IMAGE_SCN_MEM_EXECUTE",
 "IMAGE_SCN_MEM_READ"
],
 "Entropy": 6.60464
 // ...
 },
 "Imports": {
 "WINTRUST.dll": [
 "CryptCATEnumerateMember",
 "CryptCATEnumerateCatAttr"
 // ...
],
 "VERSION.dll": [
 "GetFileVersionInfoSizeW",
 "VerQueryValueW",
 "GetFileVersionInfoW"
]
 // ...
 },
 "Resources": {
 "1": {
 "Type": "RT_VERSION",
 "Language": "English - United States",
 "SHA1": "48cf205c2a63018aa56267f95490b0da0156aa6d"
 // ...
 }
 // ...
 },
 "Hashes": {
 "MD5": "ab35c68e263bb4dca6c11e16cd7fb9d8"
 // ...
 }
 // ...
}

This document has been trimmed down a for readability purposes, but links to complete reports are provided below. Here is the list of possible keys you can encounter:

	Summary (example 1 [https://manalyzer.org/json/ab35c68e263bb4dca6c11e16cd7fb9d8])

	DOS Header (example 1 [https://manalyzer.org/json/ab35c68e263bb4dca6c11e16cd7fb9d8])

	PE Header (example 1 [https://manalyzer.org/json/ab35c68e263bb4dca6c11e16cd7fb9d8])

	Image Optional Header (example 1 [https://manalyzer.org/json/ab35c68e263bb4dca6c11e16cd7fb9d8])

	Sections (sample with unprintable section names [https://manalyzer.org/json/0a0ae6454e4e6ca0ee0dc5c6ebee97ba])

	Imports (example 2 [https://manalyzer.org/json/643654975b63a9bb6f597502e5cd8f49], sample with no imports [https://manalyzer.org/json/28a5471c1c8caeb0fe8525668df34870], imports with name mangling [https://manalyzer.org/json/d64a8cfc11dedb8c3c5b8a1aaf8bd8b0])

	Delayed Imports (example 3 [https://manalyzer.org/json/14f7fba279e4040cd28ee35b7caefdb2])

	Exports (example 4 [https://manalyzer.org/json/2d378958b6fb6c4bf4177f818f52a2b9])

	Resources (example 2 [https://manalyzer.org/json/643654975b63a9bb6f597502e5cd8f49], sample with no resources [https://manalyzer.org/json/28a5471c1c8caeb0fe8525668df34870])

	Version Info (example 5 [https://manalyzer.org/json/f72cee733b1a6f30f8c850598d67b50a])

	Debug Info (example 6 [https://manalyzer.org/json/af79f5a331c50cc87f0a5f921ad93b0f])

	TLS Callbacks (example 5 [https://manalyzer.org/json/f72cee733b1a6f30f8c850598d67b50a])

	Load Configuration (example 6 [https://manalyzer.org/json/af79f5a331c50cc87f0a5f921ad93b0f])

	StringTable (example 7 [https://manalyzer.org/json/8fbaac9586f84992d21b1d66b04b8912])

	RICH Header (example 1 [https://manalyzer.org/json/ab35c68e263bb4dca6c11e16cd7fb9d8])

	Hashes (example 1 [https://manalyzer.org/json/ab35c68e263bb4dca6c11e16cd7fb9d8])

	Plugins (see below)

You can expect at least the Summary, DOS Header and DOS Header to be present in any valid report.

You’ll notice that JSON documents from the web service may contain an additional Error section that contains any message that Manalyze has printed on stderr. This will not be done automatically with Manalyze’s JSON output, so you should capture stderr manually if you’re interested in errors and warnings.

Plugins

The reports also contain a whole section dedicated to the output of any plugin called by Manalyze. As plugins are more dynamic by nature (users may have downloaded some from third-parties or developed their own), it is not possible to provide an exhaustive list of possible sections. However, all plugin results adhere to the same structure:

"plugin name": {
 "level": 3,
 "plugin_output": {
 "key 1": [
 "value 1",
 "value 2"
 // ...
],
 "key 2": "value 3"
 // ...
 },
 "summary": "A single string"
}

The level is an integer value which describes the threat level reported by the plugin. Four values are possible:

	0: The plugin indicates that the file is harmless (SAFE).

	1: The information gathered is interesting but does not indicate that the file is either goodware or malware (NO_OPINION).

	2: The file contains elements that can be indicative of malicious behavior (SUSPICIOUS).

	3: The sample exhibits characteristics that are generally found in malicious programs only. (MALICIOUS).

Keep in mind that each plugin has a very narrow scope and that it’s not unexpected to have conflicting plugin verdicts (for instance, a PE file which is both packed and signed would be flagged as safe by the authenticode plugin and malicious by the packer plugin).

Then, the plugin_output is an optional series of key-value pairs that can be freely filled by the plugin. Note that the value can be of any type (string, integer, or even lists of strings!). You’ll also notice that some keys have a names such as info_0. Those names are generated automatically by Manalyze when the plugin doesn’t specify one and can be safely ignored for any display purposes. Finally, the summary is a high-level description of the plugin’s verdict.

Here is a sample plugin output for WannaCry:

"Plugins": {
 "compilers": {
 "level": 1,
 "plugin_output": {
 "info_0": "Microsoft Visual C++ 6.0 - 8.0",
 "info_1": "Microsoft Visual C++",
 "info_2": "Microsoft Visual C++ v6.0",
 "info_3": "Microsoft Visual C++ v5.0/v6.0 (MFC)"
 },
 "summary": "Matching compiler(s):"
 },
 "strings": {
 "level": 2,
 "plugin_output": {
 "Miscellaneous malware strings": [
 "cmd.exe"
]
 },
 "summary": "Strings found in the binary may indicate undesirable behavior:"
 },
 "findcrypt": {
 "level": 1,
 "plugin_output": {
 "info_0": "Uses constants related to CRC32",
 "info_1": "Uses constants related to AES",
 "info_2": "Microsoft's Cryptography API"
 },
 "summary": "Cryptographic algorithms detected in the binary:"
 },
 "btcaddress": {
 "level": 3,
 "plugin_output": {
 "Contains a valid Bitcoin address": [
 "115p7UMMngoj1pMvkpHijcRdfJNXj6LrLn",
 "12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw",
 "13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94"
]
 },
 "summary": "This program may be a ransomware."
 },
 "imports": {
 "level": 2,
 "plugin_output": {
 "Possibly launches other programs": [
 "CreateProcessA"
],
 "Uses Microsoft's cryptographic API": [
 "CryptReleaseContext"
],
 "Interacts with services": [
 "CreateServiceA",
 "OpenServiceA",
 "OpenSCManagerA"
]
 // ...
 },
 "summary": "The PE contains functions most legitimate programs don't use."
 },
 "resources": {
 "level": 2,
 "plugin_output": {
 "info_0": "Resources amount for 98.1255% of the executable."
 },
 "summary": "The PE is possibly a dropper."
 },
 "mitigation": {
 "level": 1,
 "plugin_output": {
 "Stack Canary": "disabled",
 "SafeSEH": "disabled",
 "ASLR": "disabled",
 "DEP": "disabled"
 },
 "summary": "The following exploit mitigation techniques have been detected"
 },
 "virustotal": {
 "level": 3,
 "plugin_output": {
 "Bkav": "W32.WanaCryptBTTc.Worm",
 "MicroWorld-eScan": "Trojan.Ransom.WannaCryptor.A",
 "nProtect": "Ransom/W32.WannaCry.Zen",
 "Paloalto": "generic.ml",
 "ClamAV": "Win.Trojan.Agent-6312832-0",
 "Kaspersky": "Trojan-Ransom.Win32.Wanna.zbu",
 "BitDefender": "Trojan.Ransom.WannaCryptor.A",
 // ...
 },
 "summary": "VirusTotal score: 58/62 (Scanned on 2017-07-08 14:55:28)"
 }
}

Source [https://manalyzer.org/json/84c82835a5d21bbcf75a61706d8ab549]

Additional JSON samples:

If you need additional JSON documents to test your Manalyze integration, head to Manalyzer [https://manalyzer.org] and find a report that interests you. Just change the URL from:

https://manalyzer.org/report/[md5]

…to…

https://manalyzer.org/json/[md5]

…and you’ll be presented with the source JSON document.

 Index

Index

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Manalyze’s documentation!

 		
 User documentation

 		
 Obtaining the tool

 		
 Binary distributions

 		
 Building Manalyze

 		
 Offline builds

 		
 Troubleshooting

 		
 Initial configuration

 		
 VirusTotal plugin

 		
 ClamAV plugin

 		
 Usage

 		
 Selecting target programs

 		
 Dumping a PE’s structure

 		
 Using the plugins

 		
 Developer documentation

 		
 Before contributing

 		
 About the GPLv3 license

 		
 Coding style

 		
 Getting Help

 		
 How the code is organized

 		
 The root folder

 		
 The bin folder

 		
 The external folder

 		
 Source folders

 		
 Other folders

 		
 Writing plugins

 		
 Internal and external plugins

 		
 A sample plugin

 		
 Plugin results

 		
 PE objects

 		
 Section objects

 		
 Resource objects

 		
 Using the configuration file

 		
 Anything missing?

 		
 Writing Yara rules

 		
 Introduction

 		
 Supported commands

 		
 Sample rule

 		
 Reusing the PE parser

 		
 Embedding the code

 		
 Reusing binaries

 		
 Interfacing with Manalyze

 		
 Native Manalyze integration

 		
 Manalyzer.org API

 		
 Python API

 		
 Under the hood

 		
 JSON structure

 		
 Dump of the PE

 		
 Plugins
